Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling.
نویسندگان
چکیده
Multiple lines of evidence establish that angiotensin II (Ang II) induces not only hypertension but also directly contributes to cardiac diseases. Apoptosis signal-regulating kinase 1 (ASK1), one of mitogen-activated protein kinase kinase kinases, plays a key role in stress-induced cellular responses. However, nothing is known about the role of ASK1 in cardiac hypertrophy and remodeling in vivo. In this study, by using mice deficient in ASK1 (ASK1-/- mice), we investigated the role of ASK1 in cardiac hypertrophy and remodeling induced by Ang II. Left ventricular (LV) ASK1 was activated by Ang II infusion in wild-type mice, which was mediated by angiotensin II type 1 receptor and superoxide. Although Ang II-induced hypertensive effect was comparable to wild-type and ASK1-/- mice, LV ASK1 activation by Ang II was not detectable in ASK1-/- mice, and p38 and c-Jun N-terminal kinase (JNK) activation was lesser in ASK-/- mice than in wild-type mice. Elevation of blood pressure by continuous Ang II infusion was comparable between ASK1-/- and wild-type mice. However, Ang II-induced cardiac hypertrophy and remodeling, including cardiomyocyte hypertrophy, cardiac hypertrophy-related mRNA upregulation, cardiomyocyte apoptosis, interstitial fibrosis, coronary arterial remodeling, and collagen gene upregulation, was significantly attenuated in ASK1-/- mice compared with wild-type mice. These results provided the first in vivo evidence that ASK1 is the critical signaling molecule for Ang II-induced cardiac hypertrophy and remodeling. Thus, ASK1 is proposed to be a potential therapeutic target for cardiac diseases.
منابع مشابه
Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملCathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF-α/ASK1/JNK pathway.
Cathepsin B (CTSB), a member of the lysosomal cathepsin family that is expressed in both murine and human hearts, was previously shown to participate in apoptosis, autophagy, and the progression of certain types of cancers. Recently, CTSB has been linked to myocardial infarction. Given that cathepsin L, another member of the lysosomal cathepsin family, ameliorates pathological cardiac hypertrop...
متن کاملMnk1 (Mitogen-Activated Protein Kinase-Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice.
Identifying the key factor involved in cardiac remodeling is critically important for developing novel strategies to protect against heart failure. Here, the role of Mnk1 (mitogen-activated protein kinase-interacting kinase 1) in cardiac remodeling was clarified. Cardiac remodeling was induced by transverse aortic constriction in Mnk1-knockout mice and their wild-type control mice. After 4 week...
متن کاملNovel role for caspase-activated DNase in the regulation of pathological cardiac hypertrophy.
Caspase-activated DNase (CAD) is a double-strand-specific endonuclease that is responsible for the cleavage of nucleosomal spacer regions and subsequent chromatin condensation during apoptosis. Given that several endonucleases (eg, DNase I, DNase II, and Endog) have been shown to regulate pathological cardiac hypertrophy, we questioned whether CAD, which is critical for the induction of DNA fra...
متن کاملInvolvement of Nuclear Factor- B and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy
Background—Recently, reactive oxygen species (ROS) have emerged as important molecules in cardiac hypertrophy. However, the ROS-dependent signal transduction mechanism remains to be elucidated. In this study, we examined the role of an ROS-sensitive transcriptional factor, NFB, and a mitogen-activated protein kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1), in G-protein–couple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 93 9 شماره
صفحات -
تاریخ انتشار 2003